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Abstract   
We consider a model of elliptical stationary accretion discs developed by 

Lyubarskij et al. [4], which have derived a second order ordinary differential equation, 
describing the spatial structure of these objects. This dynamical equation contains seven 
integrals, arising from the azimuthal averaging along the elliptical disc particle orbits. 
They are functions on the unknown eccentricity distribution e(u), its derivative ė(u) ≡ 
de(u)/du and the power n in the viscosity low η = β Σ n, where u ≡ ln p, p is the focal 
parameter of  the concrete elliptical particle orbit. In the present paper, we derive linear 
relations between these unknown integrals, which may be useful to eliminate three of these 
quantities. It is also possible to eliminate even one more integral, but proving of this 
statement will be postponed in a forthcoming paper. The considered approach is 
maintained with a view to split the dynamical equation into a system of more simple 
differential equations.   
 
 

1. Introduction 
   

The accretion phenomena have many impacts on the structure and 
evolution of large variety of astrophysical objects. Such processes may 
include both spherical accretion and/or accretion via discs. In the later case, 
the disc accretion mechanism is caused by the large angular momentum of 
the material, surrounding the compact body, and falling onto it as a final 
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result. In the present investigation we shall concentrate our attention over 
accreting compact objects having stellar masses. As a general rule, the 
matter, composing the accretion flow, is supplied by another star (the so-
called donor star), orbiting around the accreting compact component of the 
binary stellar system. In some cases, the material of the disc may be 
available due to a disruption by the tidal forces of a very close orbiting 
body. But in spite of this possible (in some sense, more “exotic”) situation, 
the mass of the accretion disc will disappear very soon because of the 
exhausting processes. These may be accumulation of mass over the surface 
of central star, jets and winds from the two surfaces of the disc (like the 
stellar winds in ordinary stars) or any other outflows removing the matter 
from the vicinity of the disc. Consequently, we would expect that such 
accretion discs may be treated as stationary objects for a time scales shorter 
than the corresponding time intervals for the discs existing in the close 
binary systems.  

It is well known that the balance between the heating and cooling 
processes strongly determines the spatial structure and the time evolution of 
the accretion flows. A great variety of accretion disc models illustrates that 
the motions of the disc particles may essentially differ from the Keplerian 
one. This circumstance is able to change the flow so considerably, that in 
some parts of the disc the radial motion of matter is not inward (accretion), 
but is directed outward (excretion). This is the case for hot, advection-
dominated accretion flows, which are usually optically thin in the radial 
direction. Therefore, the photons, produced at given radii, can travel long 
distances without being absorbed. Compton scattering of these photons 
heats or cools electrons at other radii of the considered accretion disc model. 
It may turn out to be, that at a certain radius, the Compton cooling rate is 
larger than the local viscous heating rate, i.e. the cooling effect is important 
in this situation. As pointed out by Yuan et al. [1], it is possible to obtain a 
self-consistent solution for the activity of an accretion disc around a black 
hole only when the luminosity of the disc L is less than 0,01 LEddington . 
Above this critical accretion rate, the equilibrium temperature of the 
electrons at the outer radius of the disc rout is higher than the virial 
temperature, due to the strong Compton heating. As a result, the accretion is 
suppressed. Consequently, in this model, the activity of the black hole (more 
precisely, of its accretion flow) is expected to oscillate between an active 
and an inactive phase. The oscillations have time scales of the radiative time 
scale gas order at the outer radius rout .  



 7 

Another problem, associated with the description of the accretion disc 
structure around the black holes, is the following. The inner edges of these 
discs may have variable properties, if the matter inside the marginally stable 
orbit is magnetically connected to the disc. Then a non-zero torque is 
exerted on the inner disc edge and the accretion efficiency can be much 
higher than in the standard accretion disc model of Shakura & Sunyaev [2]. 
In the later case, this quantity is supposed to be equal to zero. The non-zero 
torque implies that, in the case of variable torque, transitions of the flow 
between different accretion types may be triggered [3]. 

In the present paper, we consider the problems related to the attempts to 
solve analytically the dynamical equation, governing the structure of 
elliptical accretion discs, rotating around a stellar mass objects. More 
specifically, we are dealing with the model of Lyubarskij et al. [4], which is 
a generalization of the work of Shakura & Sunyaev [2] to the case of 
elliptical accretion discs with orbits sharing a common longitude of the 
periastron. A very important property of the models [2] and [4] is that the 
trajectories of the disc particles are Keplerian ones. Consequently, our 
further conclusions cannot be applied to the above mentioned situations [1] 
and [3], i.e. our considerations shall avoid the cases of discs around black 
holes, and, especially, the disc regions too close to the central star. Such a 
limitation enables us also to escape the complications, related to the 
necessity to use general relativity for the description of disc dynamics. But 
these are not the only troubles, concerning the realistic treatment of the 
accretion flows by means of the Lyubarskij et al. model [4]. For example, 
angular momentum transport within young massive protoplanetary discs 
may be dominated by the self-gravity at the radii, where the disc is too 
weakly ionized to allow the development of the magnetorotational 
instability [5]. One important way to overcome the different problems, 
occurred in the theory of accretion discs, is to develop computer codes in 
order to perform numerical simulations of the processes in the accretion 
flows. Of course, such an approach may be applied for time-sequences of 
solutions, giving the evolution of the investigated objects. The difficulties, 
which arise in these searches, are very often caused by the vast volume of 
the needed computer capabilities. Numerical simulations of radiative 
processes in magnetized hot accretion discs (like these around black holes) 
are complicated, because the energy distributions of the particles and the 
photons span many orders of magnitude. The distributions may strongly 
depend on each other. Also, the radiative interactions behave significantly 
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differently, depending on the energy regime. Many complications in the 
computational procedures are due to the enormous difference in the time-
scales of the processes [6].  

There are many observational evidences that the accretion discs have 
complex spatial structure. Photometric and spectral studies in the near 
infrared region of the electromagnetic spectrum have led to the 
identification of a new class of accretion discs, whose members have an 
inner optically thick part, separated from an outer also optically thick part by 
an optically thin gap. This is in contrast to the discs that have inner disc 
holes. The authors of the paper [7] Espaillat et al. take for granted that the 
excess of the near infrared emission above the photosphere of the star LkCa 
15 is a blackbody continuum, that can only be due to the optically thick 
material in an inner disc around the star. If this result is combined with the 
estimation of the radius of the inner edge of the outer disc, it reveals a 
gapped structure of the accretion disc. Espaillat et al. assume that the most 
likely mechanism for clearing the detected gap in the evolving disc of the 
star LkCa 15 is the forming of planets.  

Returning to the theme of numerical simulations of the accretion flows, 
it is worthy to note that the two-dimensional hydrodynamical discs are 
nonlinearly unstable to the formation of vortices. Once formed, these 
vortices survive forever. But in three dimensions, numerical experiments 
show that only vortices in short boxes form and survive just as in two 
dimensions. The vortices in tall boxes are unstable and are destroyed. As 
pointed out by Lithwick [8], the unstable vortices decay into transient 
turbulent-like states, that transport angular momentum outward at a nearly 
constant rate for hundreds of orbital times. In the paper [8] was derived the 
criterion for the vortices to survive in three dimensions as they do in two 
dimensions. Namely, the azimuthal extend of the considered vortex must be 
larger than the local scale height of the accretion disc. When this condition 
is violated, the vortex is unstable and decays. Lithwick [8] concludes that a 
vortex with a given radial extend will survive in a three-dimensional disc if 
it is sufficiently weak (vortices are longer in azimuthal than in radial 
extend). The weak vortices behave two-dimensionally even if their width is 
much less than their height, because they are stabilized by rotation and 
behave as Taylor-Proudman columns [8]. It is also important to underline 
that the decaying of strong vortices might be responsible for the outward 
transport of angular momentum – a condition that is required for accretion 
discs to accrete. Obviously, the two-dimensional analytical model of 
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Lyubarskij et al. [4], in which the dynamical equation is a subject of our 
further considerations, does not include the vortices phenomena at all. That 
is why, this limitation must be kept in mind when the compatibility of this 
model to the real accretion discs is discussed. Nevertheless, we hope that at 
least some of its characteristics are realistic description of the elliptical discs 
in the nature and there is a reason to seek for analytical solutions of this 
model [4]. It must be stressed that the accretion disc theory itself contains 
certain unresolved problems and ambiguities. In particular, turbulent 
viscosity is frequently used in this theory to replace the microphysical 
viscosity in order to accommodate the observational need in discs, that leads 
to enhanced transport of energy and angular momentum. In paper [9] it is 
shown that the mean-field approach leads not to one, but to two transport 
coefficients that govern the mass and angular momentum transport. The 
authors of the above investigation conclude that the conventional approach 
suffers from an inconsistent neglect of the turbulent diffusion in the surface 
density equation. They constrain these two new transport coefficients for the 
specific cases of inward, outward and zero net mass transport. Hubbard and 
Blackman also find that one of the new transport terms can lead to 
oscillations in the mean surface density, which then requires a constant or 
small inverse Rossby numbers for accretion discs, to maintain a monotonic 
power-law density [9].  

The above sketched difficulties and also many other complex problems 
of the accretion flows theory (cited in the references of the listed below 
papers), unambiguously imply that we must consider models with 
reasonable simplifications. What assumptions we shall made depends, of 
course, on the accretion disc features, which we want to describe. In a series 
of papers [10], [11] and [12], we have investigated stationary accretion 
discs with elliptical shape under the assumed viscosity law η = β Σ n, where 
η is the viscosity coefficient, Σ is the surface density of the disc and β is a 
constant. The ellipticity is the dominant property, which is assumed to 
characterize all the considered cases. The power n is chosen to be a free 
parameter, which physically reasonable values lie in the range from about –
1 to about +3. The cases when n is an integer are already treated in the 
papers [11] and [13], where the dynamical equation is expressed in an 
analytical form. In what follows, we shall attempt to simplify this equation 
for noninteger powers n. This division of the values of the parameter n into 
integer/noninteger meanings has purely mathematical origin, due to our 
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ability to solve analytically some integrals, entering into the dynamical 
equation. It has not physical foundations. 
 

2. Dynamical equation for the elliptical accretion disc model 
 

For brevity, we shall not write here in an explicit form the dynamical 
equation, governing the structure of the stationary elliptical discs with orbits 
sharing a common longitude of periastron. We only note that this matter is 
already studied and discussed in earlier papers [4], [10], [11], [12] and [13], 
and we refer the reader to these investigations. We shall remind only some 
definitions and assumptions, made in these publications, in order to be 
enough clear in the further exposition. We use the notations p and u ≡ ln p 
for the focal parameter of each particle trajectory and its logarithm, 
respectively. We shall consider the power n in the viscosity law η = β Σ n as 
a constant parameter for each concrete considered model. This assumption 
means that n is the same constant throughout the disc, i.e. its derivative with 
respect to p (or u ≡ ln p) is equal to zero. We also assume that n may be 
either integer or noninteger, ranging between ≈ –1 and ≈ +3, depending on 
the considered accretion disc model (but remaining as a constant in the 
framework of the model!). By e ≡ e(u) we denote the eccentricity of the 
elliptical orbit of the particle, and by ė ≡ ė(u) ≡ de/du ≡ de/dln p we 
understand the corresponding ordinary derivative. As it is already proved in 
[13], the dynamical equation, governing the structure of the accretion flow, 
is a second order homogeneous ordinary differential equation. 
Consequently, our problem is to simplify the coefficients, entering as 
multipliers into the two terms containing ë(u) and ė(u) separately. In the 
paper [13] it is suggested that the procedure of the simplification may 
probably involve finding of linear relations between the following seven 
integrals I0-, I0+, I0, I1, I2, I3 and I4 :   
                                                  2 π       

(1)        I0-(e,ė,n) ≡ ∫(1 + ecosφ) n – 3[1 + (e – ė)cosφ] – (n + 1) dφ ,  
                                                   0                 

                                                   2 π         
(2)        I0+(e,ė,n) ≡ ∫(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 2) dφ ,   
                                                    0        

   
                                              2 π          

(3)        Ij(e,ė,n) ≡ ∫(cosφ)j(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ ;  j = 0, 1, 2, 3, 4,   
                                                  0      

where φ is the azimuthal angle over which the averaging is performed ([4], 
[10]). Using the above notations, we can write the dynamical equation of the 
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elliptical disc in the following form ([10], [13]):   
 

(4)        Σ Aik(e,ė,n) Ii(e,ė,n) Ik(e,ė,n) ë + Σ Blm(e,ė,n) Il(e,ė,n) Im(e,ė,n) ė = 0 ,  
i,k                                                              l,m 

where the indices i, k, l and m independently take meanings 0-, 0+, 0, 1, 2, 3 
and 4. Our base line in the present paper is to obtain linear relations 
between the integrals Ii(e,ė,n), (i = 0-, 0+, 0, 1, 2, 3, 4), which will allow us 
to reduce the number of these integrals in the homogeneous ordinary 
differential equation (4). As already mentioned in [13], this is another 
approach to perform simplifications of the considered dynamical equation 
(4). In the forthcoming calculations we suppose at first that, by hypothesis, 
n, n – 1 and n – 2 are not equal to zero. Consequently, if these quantities 
appear as factors in the denominators of the derived intermediate and final 
expressions, they (by themself) cannot cause divergences of the results. 
After that, we include considerations of these particular cases, in order to 
ensure the completeness of the task solution. In the next paragraph we shall 
deduce expressions which will enable us to eliminate three of the above 
seven integrals, namely: I4, I2 and I1. In following papers, we shall also 
remove the integral I0 and shall discuss the linear independence of the 
remaining three integrals I3, I0- and I0+. We stress that all the integrals are 
considered to be functions on e(u), ė(u) and n. The later quantity n has the 
same value for the entire area of the elliptical accretion disc, i.e. n does not 
depend on the focal parameter p (u ≡ ln p). Of course, for other concrete 
models n may have different (but also constant) values. As a final result, the 
integrals Ii(e,ė,n) (i = 0-, 0+, 0, 1, 2, 3, 4) will depend on u, but in the 
following calculations we shall consider e and ė as independent variables, 
having however in mind, that ė(u) ≡ de(u)/du. The later circumstance must 
be taken into account when a differentiation of the integrals (1) – (3) should 
be performed. 
 

3. Linear relations between integrals 
 

During the next calculations we shall use the well-known trivial relation 
cos2φ + sin2φ = 1 (or, equivalently: cos2φ = 1 – sin2φ), valid for all 0 ≤ φ ≤ 
2π. We also remember, that according to the original work of Lyubarskij et 
al. [4], we must limit our investigation to the cases when not only |e(u)| < 1, 
but also the conditions |ė(u)| < 1 and |e(u) – ė(u)| < 1 are fulfilled (see the 
denominators of the expressions in Appendix A of [4]). Such restrictions 
probably preserve us from the much more complicated situation, when 
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shock waves induced/generated by the singularities must be taken into 
account in the considered accretion disc model. 

 
3.1. Elimination of the integral I4(e,ė,n) 
 

According to the definition (3), we have that:  
                                                 2 π      

(5)        I4(e,ė,n) ≡ ∫(cosφ)4 (1 + ecosφ)n – 2[1 + (e – ė)cosφ] – (n + 1) dφ =  
                                                  0      
                                    2 π  

               = e – 1∫cos3φ[(1 + ecosφ) – 1](1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ =  
                                     0         
                               

2 π  
               = e – 1∫ cos3φ(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – (n + 1) dφ –  
                                     0      

                                   2 π 

               – e – 1∫ cos3φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ .     
                                    0      
The second integral is equal to I3(e,ė,n) (see definition (3)). Applying the 
relation cos2φ = 1 – sin2φ, we obtain:  
                                                                                                2 π      
(6)        I4(e,ė,n) = – e – 1 I3(e,ė,n) + e – 1∫cosφ(1 – sin2φ)(1 + ecosφ) n – 1 ×  
                                                                                                 0        
                                                                                                                                                 2 π

       
           × [1 + (e – ė)cosφ] – (n + 1) dφ = – e – 1 I3(e,ė,n) + e – 1∫cosφ(1 + ecosφ) n – 1 ×  
                                                                                                                                                  0        
                                                                                                                            2 π     
              × [1 + (e – ė)cosφ] – (n + 1) dφ + [e(e – ė)] – 1∫cosφ sinφ(1 + ecosφ) n – 1 ×  
                                                                                  0      
              × [1 + (e – ė)cosφ] – (n + 1) d[1 + (e – ė)cosφ] .   
The second integral in (6) can be immediately expressed through the 
integrals I1(e,ė,n) and I2(e,ė,n), again using the definitions (3):   
                      2 π    

(7)        ∫cosφ(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – (n + 1) dφ = I1(e,ė,n) + eI2(e,ė,n) .   
                       0      
In deriving of the third summand in the relation (6), we have used that the 
difference (e – ė) does not depend on the azimuthal angle φ. Consequently:  
                                                                                                                                                                                 2 π 

(8)        I4(e,ė,n) = e – 1I1(e,ė,n) + I2(e,ė,n) – e – 1I3(e,ė,n) – [ne(e – ė)] – 1∫cosφ sinφ ×  
                                                                                                                                                                                  0        
               × (1 + ecosφ) n – 1 d{ [1 + (e – ė)cosφ] – n } .         
Let us consider now the forth term in the above equality. Integrating by 
parts, we obtain:  
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                                                   2 π        
(9)     – [ne(e – ė)] – 1∫cosφ sinφ(1 + ecosφ) n – 1 d{ [1 + (e – ė)cosφ] – n } = – [ne(e – ė)] – 1× 
                                                    0        
                   

                                                                                                                                                                              
│2 π

                                                    
          × { cosφ sinφ(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – n │    –   
                                                                                                 │0        
                      2 π        
           –  ∫[1 + (e – ė)cosφ] – n d{ [ cosφ sinφ(1 + ecosφ) n – 1} } =   
                       0            

                                                             2 π 

         = [ne(e – ė)] – 1{ – ∫sin2φ(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – n dφ  +   
                                                              0            
                     2 π     
         + ∫cos2φ(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – n dφ  –   
                      0               
                                       2 π 

         – (n – 1)e∫cosφ sin2φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ } =   
                                         0       
                                                             2 π       
           = [ne(e – ė)] – 1{ 2 ∫cos2φ(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – n dφ  –   
                                                              0      

                  2 π          
           – ∫(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – n dφ –   
                   0             
                                       2 π         

           – (n – 1)e∫cosφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ  +   
                                        0           
                                        2 π             

           + (n – 1)e∫cos3φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ } .   
                                        0           

In the above derivation we have used the relation cos2φ + sin2φ = 1 
and trivially following from it simple equality:  
(10)     – sin2φ + cos2φ = 2 cos2φ – 1 .   

Like the expression (7), we shall preliminary compute several 
auxiliary relations, which will help us further simplify the expression (9):  
                        2 π        
(11)       ∫(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ  =   

0            
                            2 π           
                = ∫[1 + (e – ė)cosφ](1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ  =   
                             0           
                = I0(e,ė,n) + (e – ė)I1(e,ė,n) .  

By analogy with the above computation, we multiply both the 
nominator and the denominator of the integrals by [1 + (e – ė)cosφ]. The 
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assumed condition |e(u) - ė(u)| < 1 for all u imply that this expression is 
never equal to zero. By a fully similar way, we evaluate the following 
integrals:  
                         2 π        
(12) ∫cosφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ  = I1(e,ė,n) + (e – ė)I2(e,ė,n) ,  
                         0           
 
             2 π        
(13) ∫cos2φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ  = I2(e,ė,n) + (e – ė)I3(e,ė,n) ,  
                         0               
                        2 π        
(14)       ∫cos3φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ  = I3(e,ė,n) + (e – ė)I4(e,ė,n) ,  
                         0           
where, of course, we have used definitions (3). Then, we continue the 
transformation of the right-hand side of (9):  
                                                            2 π        
(15)       – [ne(e – ė)] – 1∫cosφ sinφ(1 + ecosφ) n – 1 d{[1 + (e – ė)cosφ] – n} =   
                                                             0        
                                                                            

                                                             2 π        
           = [ne(e – ė)] – 1{ 2 ∫cos2φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ  +   
                                                              0          
                            2 π 

           + 2e ∫cos3φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ  –   
                             0           
                      2 π       
          – ∫(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ  –    
                       0           
                          2 π              
          – e  ∫cosφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ  +   
                           0        
                                              2 π             
           + (– ne + e) ∫cosφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ  +   
                                               0               
                                         2 π            
           + (ne – e) ∫cos3φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ }  =   
                                          0                  
         = [ne(e – ė)] – 1{ 2I2(e,ė,n) + 2(e – ė)I3(e,ė,n) + 2eI3(e,ė,n) + 2e(e – ė)I4(e,ė,n) –    
           – I0(e,ė,n) – (e – ė)I1(e,ė,n) – eI1(e,ė,n) – e(e – ė)I2(e,ė,n) + (– ne + e)I1(e,ė,n) +   
           + (– ne + e)(e – ė)I2(e,ė,n) + (ne – e)I3(e,ė,n) + (ne – e)(e – ė) I4(e,ė,n) } .   

 
Substituting this result into (8) and multiplying by ne(e – ė), we 

obtain the following expression for the integral I4(e,ė,n):   
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(16) e(e – ė)I4(e,ė,n) = I0(e,ė,n) + [e + (n – 1)ė]I1(e,ė,n) – 2I2(e,ė,n) –  
– [3e + (n – 2)ė]I3(e,ė,n).   

In the above derivation we have supposed that n ≠ 0, e(u) ≠ 0 and 
[e(u) – ė(u)] ≠ 0. But the linear relation makes sense even if some of these 
conditions are not fulfilled. We shall now check the validity of (16) for 
these particular cases. In the next, we suppose that u is a certain value of the 
logarithm of the focal parameter p, for which we have e(u) = 0, or [e(u) – 
ė(u)] = 0, or both equalities e(u) = 0 and [e(u) – ė(u)] = 0 hold. In other 
words, the cases integer/noninteger n, zero/nonzero e(u) and zero/nonzero 
[e(u) – ė(u)] give 23 = 8 combinations. The relation (16) is until now proved 
only for one case, namely n ≠ 0, e(u) ≠ 0 and [e(u) – ė(u)] ≠ 0 
simultaneously. We shall now prove (16) for the rest seven cases, which 
may be considered (in some sense) as certain particular exceptional 
situations.  
 

3.1.1. Case n ≠ 0, e(u) = 0, e(u) – ė(u) = 0  =>  e(u) = ė(u) = 0. 
 

The linear relation (16) can be written as:  
(17)       0 = I0(0,0,n) – 2 I2(0,0,n).   
                                                                                                                     2 π                                                       2 π 
We immediately compute that I0(0,0,n) = ∫dφ = 2π and I2(0,0,n) = ∫cos2φ dφ = π.  
                                                                                                                       0                                                          0       

Obviously, (17) is fulfilled.  
 

3.1.2.1. Case n ≠ 0, n ≠ 1, e(u) = 0, e(u) – ė(u) ≠ 0  => ė(u) ≠ 0. 
 

The relation (16) now becomes:  
(18)       0 = I0(0,ė,n) + (n – 1)ėI1(0,ė,n) – 2I2(0,ė,n) – (n – 2)ėI3(0,ė,n) .   

We compute directly that:   
                                                   2 π                                                                                 2 π 

(19)       I3(0,ė,n) = ∫cos3φ(1 – ėcosφ) – (n + 1) dφ = – ė – 1∫cos2φ[(1 – ėcosφ) – 1] ×  
                                                    0                                                                                    0           
                                                                                                          

                                                                                          2 π 

           × (1 – ėcosφ) – (n + 1) dφ = ė – 1∫cos2φ(1 – ėcosφ) – (n + 1) dφ  –   
                                                                                           0         
                                  2 π                                                                                                       2 π             
              – ė – 1∫cos2φ(1 – ėcosφ) – n dφ = ė – 1I2(0,ė,n) – ė – 1∫(1 – sin2φ)( 1 – ėcosφ) – n dφ  =   
                                   0                                                                                                          0                  
                                                                   

                                                                    2 π                                                     2 π            
             = ė – 1I2(0,ė,n) – ė – 1∫(1 – ėcosφ) – n dφ + ė –2 ∫sinφ(1 – ėcosφ) – n d(1 – ėcosφ)  =   
                                                                     0                                                        0            
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                                                                                                                                                             2 π                      
             = ė – 1I2(0,ė,n) – ė – 1I0(0,ė,n) + I1(0,ė,n) + [(–n + 1)ė2] – 1∫sinφd[(1 – ėcosφ) – (n – 1)] = 
                                                                                                                                                              0      
             = – ė – 1I0(0,ė,n) + I1(0,ė,n) + ė –  1I2(0,ė,n) – [(n – 1)ė2] – 1 ×  
                                                                                                        │ 2 π    2 π 
           × { sinφ[(1 – ėcosφ) – (n – 1)]│   –  ∫ cosφ[(1 – ėcosφ) – (n – 1)] dφ } =   
                                                                                               │ 0        0          
                                                                                                                                                              2 π               
           = – ė – 1I0(0,ė,n) + I1(0,ė,n) + ė – 1I2(0,ė,n) + [(n – 1)ė2] – 1∫cosφ(1 – 2ėcosφ +  
                                                                                                                                                                0 

           + ė2cos2φ)(1 – ėcosφ) – (n + 1) dφ = – ė – 1I0(0,ė,n) + I1(0,ė,n) + ė – 1I2(0,ė,n) +   
 
              +[(n – 1)ė2] – 1I1(0,ė,n) – 2[(n – 1)ė] – 1I2(0,ė,n) + (n – 1) – 1I3(0,ė,n) .   
 
 Consequently, for n ≠ 1 (by supposition), after multiplying the both 
sides of (19) by ė(n – 1), we have: 
   
(20)       – (n – 1)I0(0,ė,n) + [ė – 1 + (n – 1)ė]I1(0,ė,n) + (n – 3)I2(0,ė,n) –  
              – (n – 2)ėI3(0,ė,n) = 0 .  

By direct computation we also get:  
                                                   2 π                                                                                 2 π 

(21)       I2(0,ė,n) = ∫cos2φ(1 – ėcosφ) – (n + 1) dφ = – ė – 1∫cosφ[(1 – ėcosφ) – 1] ×  
                                                    0                                                                                    0                     

                  
                                                                                     2 π         
             × (1 – ėcosφ) – (n + 1) dφ = ė – 1∫cosφ(1 – ėcosφ) – (n + 1) dφ  –   
                                                                                               0            
                                     2 π                                                                                                     2 π                                                                             
                – ė – 1∫cosφ(1 – ėcosφ) – n dφ = ė – 1I1(0,ė,n) – ė – 1∫(1 – ėcosφ) – n d sinφ  =   
                                      0                                                                                                        0              
                                                                                                                                   │ 2 π     2 π 
                = ė – 1I1(0,ė,n) – ė – 1{ sinφ[(1 – ėcosφ) – n]│   –  ∫ sinφ d{ [(1 – ėcosφ) – n] } } =   
                                                                                                                                   │ 0         0          
                                                                  2 π                    
             = ė – 1I1(0,ė,n) – n∫(1 – cos2φ)[(1 – ėcosφ) – (n + 1)] dφ  =   
                                                                    0           
                = ė – 1I1(0,e,n) – n[I0(0,e,n) – I2(0,e,n)] .   
           Therefore:   
(22)       (n – 1)I2(0,e,n) = nI0(0,e,n) – ė – 1I1(0,e,n) ,   or  
(23)       (n – 3)I2(0,e,n) = nI0(0,e,n) – ė – 1I1(0,e,n) – 2I2(0,e,n) .   

 
Substituting this result for (n – 3)I2(0,e,n) into the relation (20), we 

shall obtain the sought equality (18).  
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3.1.2.2. Case n = 1, e(u) = 0, e(u) – ė(u) ≠ 0  => ė(u) ≠ 0. 
 

The relation (16) becomes:  
(24)       0 = I0(0,ė,1) – 2I2(0,ė,1) + ėI3(0,ė,1) .  

We compute directly that:  
                                                   2 π                                                                     2 π       

(25)       I3(0,ė,1) = ∫ cos3φ(1 – ėcosφ) – 2 dφ = ė – 3∫(– ė3cos3φ)(1 – ėcosφ) – 2 dφ  =   
                                                    0                                                                        0                                              
                                          2 π      

                =  – ė – 3∫(1 – 3ėcosφ + 3ė2cos2φ – ė3cos3φ)(1 – ėcosφ) – 2 dφ  +   
                                             0                                

                                      2 π                                                                                                                     2 π 

                + ė – 3∫(1 – 3ėcosφ + 3ė2cos2φ)(1 – ėcosφ) – 2 dφ = – ė – 3∫(1 – ėcosφ) dφ  +   
                                      0                                                                                                                         0            

                + ė – 3 I0(0,ė,1) – (3ė/ė3)I1(0,ė,1) + (3ė2/ė3)I2(0,ė,1)  =   
                =  – 2πė – 3 + 0 + ė – 3 I0(0,ė,1) – 3ė – 2 I1(0,ė,1) + 3ė – 1 I2(0,ė,1) .   

Let us evaluate the third nonzero term in the right-hand side:  
                                                                                                2 π                                   

(26)       – 3ė – 2 I1(0,ė,1) =  – 3(2ė3) – 1∫2ėcosφ(1 – ėcosφ) – 2 dφ  =   
                                                                                                 0              

                                                 2 π               

             = 3(2ė3) – 1∫(1 – 2ėcosφ + ė2cos2φ)(1 – ėcosφ) – 2 dφ  –   
                                                   0                  

                                                 2 π         

             – 3(2ė3) – 1∫(1 + ė2cos2φ)(1 – ėcosφ) – 2 dφ  =    
                                                0             

                = 3(2ė3) – 1 2π  – 3(2ė3) – 1I0(0,ė,1) – 3(2ė) – 1I2(0,ė,1) .    
Substituting this result into equation (25), we obtain:  

(27)       I3(0,ė,1) = [– ė – 3 + 3(2ė3) – 1]2π + [ė – 3 – 3(2ė3) – 1]I0(0,ė,1) +  
             + [3ė – 1 – 3(2ė) – 1I2(0,ė,1) ,    or  
(28)       I3(0,ė,1) = 2π (2ė – 3) – (2ė – 3)I0(0,ė,1) + 3(2ė) – 1I2(0,ė,1) .   
          In straightforward way we find that:   
                                                                           2 π                                                                        2 π          

(29)       3ė – 1I2(0,ė,1) = 3ė – 1∫cos2φ(1 – ėcosφ) – 2 dφ  = 3ė – 3∫ė2cos2φ(1 – ėcosφ) – 2 dφ =   
                                                                            0                                                                           0       

                                          2 π                                                                                                                2 π 

              = 3ė – 3∫(1 – 2ėcosφ + ė2cos2φ)(1 – ėcosφ) – 2 dφ – 3ė – 3∫(1 – 2ėcosφ) ×   
                                           0                                                                                                                   0         
                 × ( 1 – ėcosφ) – 2 dφ = 3ė – 32π  – 3ė – 3I0(0,ė,1) + 6ė – 2I1(0,ė,1) .    

 
Dividing the both sides of this equality by 6, we have: 

(30)       (2ė3) – 12π = (2ė3) – 1I0(0,ė,1) – ė – 2I1(0,ė,1) + (2ė) – 1I2(0,ė,1) .   
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Substituting this into (28) and multiplying by ė, we shall finally obtain the 
following intermediate result:   
(31)       0 = ė – 1I1(0,ė,1) – 2I2(0,ė,1) + ėI3(0,ė,1) .    

Our further computations include explicit analytical evaluations of 
the integrals I0(0,ė,1) and I3(0,ė,1):   
                                                   2 π     

(32)       I0(0,ė,1) = ∫(1 – ėcosφ) – 2 dφ = 2π (1 – ė2) – 3/ 2 ,  
                                                    0 

according to formula 858.535 from [14]. 
                                                   2 π                                                                      2 π 

(33)       I1(0,ė,1) = ∫cosφ(1 – ėcosφ) – 2 dφ = – ė – 1∫[(1 – ėcosφ) – 1](1 – ėcosφ) – 2 dφ  =  
                                                    0                                                                         0        

                                     

                                       2 π                                                     2 π    

              = ė – 1∫(1 – ėcosφ) – 2 dφ – ė – 1∫(1 – ėcosφ) – 1 dφ .    
                                        0                                                         0       

From Dwight [14], formula 858.525, we find that:   
                        2 π       

(34)       ∫(1 – ėcosφ) – 1 dφ = 2π (1 – ė2) – 1/ 2 .   
                         0       

Combining evaluations (32) and (34) into (33), the result is:  
(35)       I1(0,ė,1) = 2π ė – 1(1 – ė2) – 1(1 – ė2) – 1/ 2  – 2π ė – 1(1 – ė2) – 1/ 2  =   
                 =  2π ė(1 – ė2) – 3/ 2  = ėI0(0,ė,1) .  

Substituting the above result into (31), we finally obtain the 
necessary relation (24). 
 

3.1.3. Case n ≠ 0, e(u) ≠ 0, e(u) – ė(u) = 0  => ė(u) = e(u) ≠ 0. 
 

The relation (16) can be written as:  
(36)       0 = I0(e,ė = e,n) + nėI1(e,ė = e,n) – 2I2(e,ė = e,n) – (n + 1)ėI3(e,ė = e,n) .  

We compute directly that:  
                                                            2 π                                                                       2 π               

(37)       I3(e,ė = e,n) = ∫cos3φ(1 + ecosφ) n – 2 dφ = e – 1∫[(1 + ecosφ) – 1](1 + ecosφ) n – 2  ×  
                                                             0                                                                         0            

 

                                                                   2 π                                                                      2 π             

              × cos2φ dφ = e – 1∫cos2φ(1 + ecosφ) n – 1dφ  – e – 1∫cos2φ(1 + ecosφ) n – 2 dφ =  
                                                                    0                                                                          0   

                                                                                2 π 

              =  – e – 1I2(e,ė = e,n) + e – 1∫cosφ(1 + ecosφ) n – 1d sinφ = – e – 1I2(e,ė = e,n) +  
                                                                                           0            

                                                                                                         │2 π       2 π              

              + e – 1{ sinφ cosφ(1 + ecosφ) n – 1│   –   ∫sinφ d[cosφ(1 + ecosφ) n – 1] }  =   
                                                                                                                 │0           0 
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                                                                                 2 π                                                                                    2 π 
          = – e – 1I2(e,ė = e,n) + e – 1∫sin2φ(1 + ecosφ) n – 1dφ + (n – 1)e – 1∫sinφ cosφ  ×   
                                                                                  0                                                                                       0          

                                                                                                                                               2 π          

         × (1 + ecosφ) n – 2esinφ dφ = – e – 1I2(e,ė = e,n) + e – 1∫(1 – cos2φ)(1 + ecosφ) n – 1dφ + 
                                                                                                                                                0      

                                   2 π                                                                                                                                  2 π             

        + (n – 1)∫cosφ sin2φ(1 + ecosφ) n – 2dφ = – e – 1I2(e,ė = e,n) + e – 1∫(1 + ecosφ) n – 2dφ + 
                                    0                                                                                                                                     0        

                    2 π                                                                  2 π                                                            2 π          

          + ∫cosφ(1 + ecosφ) n – 2dφ – e – 1∫cos2φ(1 + ecosφ) n – 2dφ – ∫cos3φ(1 + ecosφ) n – 2dφ + 
                     0                                                                      0                                                               0                                          

                                     2 π                                                                            2 π             

         + (n – 1)∫cosφ(1 + ecosφ) n – 2dφ – (n – 1) ∫cos3φ (1 + ecosφ) n – 2dφ  =   
                                      0                                                                               0  

         = – e – 1I2(e,ė = e,n) + e – 1I0(e,ė = e,n) + I1(e,ė = e,n) – e – 1I2(e,ė = e,n) –   
         – I3(e,ė = e,n) + (n – 1)I1(e,ė = e,n) – (n – 1)I3(e,ė = e,n) .   

Therefore:  
(38)       0 = e – 1I0(e,ė = e,n) + nI1(e,ė = e,n) – 2e – 1I2(e,ė = e,n) – (n + 1)I3(e,ė = e,n) .  

Multiplying (38) by e and taking into account that for the considered 
value of u e(u) = ė(u), we complete the proof of the linear relation (36).    
 

3.1.4. Case n = 0, e(u) = 0, e(u) – ė(u) = 0  => ė(u) = 0. 
 

The relation (16) can be written as:   
(39)       0 = I0(0,0,0) – 2I2(0,0,0) .  
                                                                                   2 π                                                         2 π         

In this case I0(0,0,0) = ∫dφ = 2π and I2(0,0,0)  = ∫cos2φ dφ = π. Then (39)   
                                                                                     0                                                            0          

immediately follows. 
 

3.1.5. Case n = 0, e(u) = 0, e(u) – ė(u) ≠ 0  => ė(u) ≠ 0. 
 

The relation (16) becomes:  
(40)       0 = I0(0,ė,0) – ėI1(0,ė,0) – 2I2(0,ė,0) + 2ėI3(0,ė,0) .  

The direct computation gives:  
                                           2 π                                                                       2 π       

(41)   I3(0,ė,0) = ∫cos3φ(1 – ėcosφ) – 1dφ = – ė – 1∫cos2φ[(1 – ėcosφ) – 1](1 – ėcosφ) – 1dφ = 
                                             0                                                                         0            

                              

                              

                              2 π                                                                  2 π      

           = ė – 1∫cos2φ(1 – ėcosφ) – 1dφ – ė – 1∫cos2φ dφ = ė – 1I2(0,ė,0) – π ė – 1 .   
                               0                                                                    0     
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Multiplying by 2ė, we shall obtain:  
(42)       2ėI3(0,ė,0) – 2I2(0,ė,0) = – 2π .  

Further we also evaluate that:  
                                                  

                                                   2 π                                                                       2 π 

(43)       I1(0,ė,0) = ∫cosφ(1 – ėcosφ) – 1dφ =  – ė – 1∫[(1 – ėcosφ) – 1](1 – ėcosφ) – 1dφ  =   
                                                    0                                                                         0  

                                                                2 π     

                = – 2πė – 1 + ė – 1∫(1 – ėcosφ) – 1dφ .    
                                                                 0    

Consequently:  
(44)       ėI1(0,ė,0) – I0(0,ė,0) =  – 2π .    

Combining (42) and (44), we attain to the relation (40). 
 

3.1.6. Case n = 0, e(u) ≠ 0, e(u) – ė(u) = 0  => ė(u) = e(u) ≠ 0. 
 

The linear relation (16) can be written as:   
(45)       0 = I0(e,ė = e,0) – 2I2(e,ė = e,0) – 3ėI3(e,ė = e,0) .   

To prove the above statement, we must perform evaluation of the 
integrals   
                                   2 π                                                                                      2 π     

I0(e,ė = e,0) = ∫(1 – ėcosφ) – 2dφ , …, I3(e,ė = e,0) = ∫cos3φ(1 – ėcosφ) – 2dφ . Clearly, this  
                                    0                                                                                          0           

is fully analogous to the estimation of the integrals in the case 3.1.2.2. We 
must only replace – ė(u) in the denominators of the integrals by e(u) and 
proceed by the same way, when we were proving the relation (24). We shall 
not write out these clumsy calculations again, in order to prove validity of 
the relation (45). 
 

3.1.7. Case n = 0, e(u) ≠ 0, e(u) – ė(u) ≠ 0. 
 

The linear relation (16) now becomes: 
(46)       e(e – ė)I4(e,ė,0) = I0(e,ė,0) + (e – ė)I1(e,ė,0) – 2I2(e,ė,0) – (3e – 2ė)I3(e,ė,0) .  

In an earlier paper [11] (formulas (3a) – (3d)) we have already 
derived in explicit form analytical expressions for the integrals, entering in 
(46). We shall now rewrite in a little more compact form these results. Let 
us denote by A(e,ė) the multiplier: 
(47)       A(e,ė) = 2πė – 2(1 – e2) – 3/ 2[1 – (e – ė)2] – 1/ 2 .    
Then, according to [11] (formulas (3a) – (3d)), with this simplification of 
the notations, we have: 
(48)       I0(e,ė,0) = A(e,ė){ eė[1 – (e – ė)2]1/ 2 – e(e – ė)(1 – e2)[1 – (e – ė)2]1/ 2 +  
             + (e – ė)2(1 – e2) 3/ 2 },    
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(49)       I1(e,ė,0) = A(e,ė){ (e – ė – e3)[1 – (e – ė)2]1/ 2 – (e – ė)(1 – e2) 3/ 2 },    
(50)       I2(e,ė,0) = A(e,ė){ (– 1 + e2 + eė)[1 – (e – ė)2]1/ 2 + (1 – e2) 3/ 2 },   
(51)       I3(e,ė,0) = A(e,ė)e – 2(e – ė) – 1{– e2(1 – e2) 3/ 2 + [e2 – e4 – e3ė – ė2 + 2e2ė2 +  
              + ė2(1 – e2) 3/ 2][1 – (e – ė)2]1/ 2 },   
(52)       e(e – ė)I4(e,ė,0) = A(e,ė)e – 2(e – ė) – 1{ e3(1 – e2) 3/ 2 + (– e3 + e5 + e4ė + 3eė2 –   
             – 5e3ė2 – 2ė3 + 3e2ė3)[1 – (e – ė)2]1/ 2 + (– 3eė2 + 2ė3)(1 – e2) 3/ 2[1 – (e – ė)2]1/ 2 }.  

Let us now compute the right-hand side of the equality (46):  
(53)       I0(e,ė,0) + (e – ė)I1(e,ė,0) – 2I2(e,ė,0) – (3e – 2ė)I3(e,ė,0) = A(e,ė)e – 2(e – ė) – 1 ×   
          × { e2(e – ė)eė[1 – (e – ė)2]1/ 2 – e3(e – ė)2(1 – e2)[1 – (e – ė)2]1/ 2 +  
          + e2(e – ė)3(1 – e2) 3/ 2 + e2(e – ė)2(e – ė – e3)[1 – (e – ė)2]1/ 2 – e2(e – ė)2(1 – e2) 3/ 2 +   
          + (2 – 2e2 – 2eė)e2(e – ė)[1 – (e – ė)2]1/ 2 – 2e2(e – ė)(1 – e2) 3/ 2 +   
          + (3e – 2ė)e2(1 – e2) 3/ 2 + (– 3e + 2ė)(e2 – e4 – e3ė – ė2 + 2e2ė2 +   
          + ė2(1 – e2) 3/ 2[1 – (e – ė)2]1/ 2 } =  
          = A(e,ė)e – 2(e – ė) – 1{(– e3 + e5 + e4ė + 3eė2 – 5e3ė2 – 2ė3 + 3e2ė3)[1 – (e – ė)2]1/ 2 +  
          + e3(1 – e2) 3/ 2 + (– 3eė2 + 2ė3)(1 – e2) 3/ 2[1 – (e – ė)2]1/ 2 } = e(e – ė)I4(e,ė,0) .  

Hence, the linear relation (46) is proved. With this, we have also 
completed the validity of relation (16) in the general case. That is, for 
integer/noninteger powers n, zero/nonzero values of e(u) (for |e(u)| < 1) and 
ė(u) (for |ė(u)| < 1), and also for zero/nonzero values of [e(u) – ė(u)] (for 
|e(u) – ė(u)| < 1). 
 

3.2. Elimination of the integral I2(e,ė,n)  
 

Generally speaking, the approach in the computing of I4(e,ė,n) is the 
following: we perform a series of evaluations of I4(e,ė,n), decomposing its 
integrand into such, containing into their nominators powers of cosφ equal 
or less than 4, and the same denominators [1 + (e – ė)cosφ] n + 1. After that, 
we transfer the repeatedly appeared integrals I4(e,ė,n) in the right-hand side 
into the left-hand side, in order to combine all I4(e,ė,n). Unfortunately, such 
a procedure does not work at all when we try to apply it for elimination of 
the integral I3(e,ė,n) (we suppose that the linear relation (16) is already used 
for removing of the integral I4(e,ė,n)). The reason for this unsuccessful 
attempt is that the multiplier before I3(e,ė,n) equals to zero for all values of 
the variable u. It is suspected that this impossibility is in relation to the 
linear independence of the considered seven integrals (1), (2) and (3). We 
shall not deal with this problem in the present paper and continue to the 
evaluation of the integral I2(e,ė,n).    

According to the definition (3), we can write:  
                                                   2 π                    

(54)       I3(e,ė,n) = ∫cos3φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ  =   
                                                    0                     
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                                 2 π      

           = e – 1∫cos2φ[(1 + ecosφ) – 1](1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ  = 
                                 0              

                                 

                                 2 π              

           = e – 1∫cos2φ(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – (n + 1) dφ  –   
                                  0           

                                2 π           

           – e – 1∫cos2φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ  =   
                                 0              

                                                                        2 π         

             = – e – 1I2(e,ė,n) + e – 1∫(1 – sin2φ)(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – (n + 1) dφ  =  
                                                                          0              

   
                                                                      2 π          

           = – e – 1I2(e,ė,n) + e – 1∫(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – (n + 1) dφ  +   
                                                                          0       

 

                                                  2 π             

           + [e(e – ė)] – 1∫sinφ(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – (n + 1) d[1 + (e – ė)cosφ] .   
                                                  0             

Applying a relation analogous to (7), we obtain:  
(55)       I3(e,ė,n) = – e – 1I2(e,ė,n) + e – 1I0(e,ė,n) + I1(e,ė,n)  – 
                                                    2 π      

           – [ne(e – ė)] – 1∫sinφ(1 + ecosφ) n – 1d{ [1 + (e – ė)cosφ] – n }  =  
                                                     0          

 

         = e – 1I0(e,ė,n) + I1(e,ė,n) – e – 1I2(e,ė,n) – [ne(e – ė)] – 1{ sinφ(1 + ecosφ) n – 1 ×   
                                                                   │2 π                                         2 π 

        × [1 + (e – ė)cosφ] – n│ } + [ne(e – ė)] – 1{ ∫cosφ(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – ndφ –  
                                                                       │0                                             0               

                                       2 π     

         – e(n – 1)∫sin2φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – ndφ }  =   
                                        0                

                                                                                                                                                          2 π      

           = e – 1I0(e,ė,n) + I1(e,ė,n) – e – 1I2(e,ė,n) + [ne(e – ė)] – 1{ ∫cosφ[1 + (e – ė)cosφ] × 
                                                                                                                                                           0         

                                                                                                                                           2 π    

         ×(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – (n + 1)dφ – (n – 1)e{ ∫(1 + ecosφ) n – 2  ×    
                                                                                                                                                     0      

                                                                                                          

                                                                                                         2 π    

         × [1 + (e – ė)cosφ] – (n + 1)dφ + (e – ė)∫cosφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1)dφ – 
                                                                                                          0        

                     

                    2 π     

           – ∫cos2φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1)dφ –  
                     0       
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                                      2 π    

           – (e – ė) ∫cos3φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1)dφ } } =   
                                       0         

         = e – 1I0(e,ė,n) + I1(e,ė,n) – e – 1I2(e,ė,n) + [ne(e – ė)] – 1[I1(e,ė,n) + eI2(e,ė,n)  +  
         + (e – ė)I2(e,ė,n) + e(e – ė)I3(e,ė,n) – (n – 1)eI0(e,ė,n) – (n – 1)e(e – ė)I1(e,ė,n) + 
           + (n –1)eI2(e,ė,n) + (n – 1)e(e – ė)I3(e,ė,n)] .    
 Consequently, we have the following expression:  
(56)       I3(e,ė,n) = {e – 1 – (n – 1)[n(e – ė) ] – 1}I0(e,ė,n) +  
           + {1 + [ne(e – ė)] – 1 – (n – 1)n – 1}I1(e,ė,n) + {– e – 1 + [n(e – ė)] – 1 + (ne) – 1  +   
             + (n – 1)[n(e – ė)] – 1}I2(e,ė,n) + [n – 1 + (n – 1)n – 1]I3(e,ė,n) .   

It is evident that the integrals I3(e,ė,n) from the both sides of the 
above equality cancel out, and it is impossible to determine any linear 
relation between I3(e,ė,n), I0(e,ė,n), I1(e,ė,n), and I2(e,ė,n), as already 
mentioned above. Nevertheless, the result (56) may be used to eliminate the 
integral I2(e,ė,n). Multiplying (56) by ne(e – ė), we obtain:  
(57)       [e + (n – 1)ė]I2(e,ė,n) = (– e + nė)I0(e,ė,n) – [1 + e(e – ė)]I1(e,ė,n) .   

In the above derivation, we again have supposed that simultaneously 
are fulfilled the following three conditions: n ≠ 0, e(u) ≠ 0, e(u) – ė(u) ≠ 0, 
for every considered value of the independent variable u ≡ ln p ( p is the 
focal parameter of the particle orbit). We note that (57) makes sense even if 
some (or even all) of these restrictions are violated.  
 

3.2.1. Case n ≠ 0, e(u) = 0, e(u) – ė(u) = 0  => e(u) = ė(u) = 0. 
                                                                                                                                                                          2 π     

       The relation (57) is obviously satisfied, because I1(0,0,n) = ∫cosφ dφ = 0.  
                                                                                                                                                                                        0              

3.2.2. Case n ≠ 0, e(u) = 0, e(u) – ė(u) ≠ 0  => ė(u) ≠ 0. 
 

The relation (57) takes the form: 
(58)       (n – 1)ėI2(0,ė,n) = nėI0(0,ė,n) – I1(0,ė,n) .  

We compute that:  
                                               2 π                                                                  2 π 

(59)     I2(0,ė,n) = ∫cos2φ(1 – ėcosφ) – (n + 1)dφ = ∫(1 – ėcosφ) – (n + 1)dφ – 
                            0                                                                     0         
                    2 π                                                                                                     2 π                                        

           – ∫sin2φ(1 – ėcosφ) – (n + 1)dφ = I0(0,ė,n) – ė – 1∫sinφ(1 – ėcosφ) – (n + 1)d(1 – ėcosφ) =   
                     0                                                                                                        0    

                                                               2 π                                                                                                                                                   │2 π 

         = I0(0,ė,n) + (nė) – 1∫sinφd[(1 – ėcosφ) – n] = I0(0,ė,n) + (nė) – 1{sinφ(1 – ėcosφ) – n│ – 
                 

                                                0                                                                                                                                                    │0                         

                    2 π                                                                                                    2 π 

         – ∫cosφ(1 – ėcosφ) – ndφ} = I0(0,ė,n) – (nė) – 1∫cosφ(1 – ėcosφ)(1 – ėcosφ) – (n + 1)dφ = 
                     0                                                                                                       0         
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         = I0(0,ė,n) – (nė) – 1I1(0,ė,n) + n – 1I2(0,ė,n) .    
       From this equality follows:  
(60)       (1 – n – 1)I2(0,ė,n) ≡ (n –1)ė(nė) – 1I2(0,ė,n) = I0(0,ė,n) – (nė) – 1I1(0,ė,n) .  
       Multiplying by nė ≠ 0, we obtain the seeked equality (58). 
 

3.2.3. Case n ≠ 0, e(u) ≠ 0, e(u) – ė(u) = 0  => ė(u) = e(u) ≠ 0. 
 

The relation (57) in this case becomes: 
(61)       [e + (n – 1)ė]I2(e,ė = e,n) ≡ nėI2(e,ė = e,n) = (n – 1)ėI0(e,ė = e,n) – I1(e,ė = e,n) .  

We directly compute that: 
                                                            2 π                                                                      2 π            

(62)       I2(e,ė = e,n) = ∫cos2φ(1 + ecosφ) n – 2dφ = e – 1∫cosφ[(1 + ecosφ) – 1] ×   
                                                             0                                                                         0            

                                                                                      2 π                                                                   2 π                 

           ×(1 + ecosφ) n – 2dφ = – e – 1∫cosφ(1 + ecosφ) n – 2dφ + e – 1∫(1 + ecosφ) n – 1d sinφ =  
                                                                                       0                                                                      0      

                                                                                                                                                  │2 π     2 π        

           = – e – 1I1(e,ė = e,n) + e – 1{ sinφ(1 + ecosφ) n – 1│   –  ∫sinφ d[(1 + ecosφ) n – 1]} =  
                                                                                                                                          │0         0        

                                                                                          2 π 

             = – e – 1I1(e,ė = e,n) + (n – 1)∫(1 – cos2φ)(1 + ecosφ) n – 2dφ  =   
                                                                                           0       

             = – e – 1I1(e,ė = e,n) + (n – 1)I0(e,ė = e,n) – (n – 1)I2(e,ė = e,n) .    
Multiplication of the both sides by ė(u) = e(u) ≠ 0 gives the result:  

(63)       nėI2(e,ė = e,n) = (n – 1)ėI0(e,ė = e,n) – I1(e,ė = e,n) ,  
that proves (61). 
 

3.2.4. Case n = 0, e(u) = 0, e(u) – ė(u) = 0  => ė(u) = 0. 
                                                                                                                                                                         2 π 

       The relation (57) is obviously true, because I1(0,0,0) = ∫cosφ dφ = 0 .    
                                                                                                                                                                                0        

 
3.2.5. Case n = 0, e(u) = 0, e(u) – ė(u) ≠ 0  => ė(u) ≠ 0. 
 

The relation (57) now becomes:  
(64)       – ėI2(0,ė,0) =  – I1(0,ė,0) .  

It is evident that:  
                                               2 π                                                                       2 π                                                                   
(65)     I2(0,ė,0) = ∫cos2φ(1 – ėcosφ) – 1dφ = – ė – 1∫cosφ[(1 – ėcosφ) – 1](1 – ėcosφ) – 1dφ = 
                                                0                                                                          0               

                                  2 π                               2 π 

           = – ė – 1∫cosφ dφ + ė – 1∫cosφ(1 – ėcosφ) – 1dφ = ė – 1I1(0,ė,0) .  
                                   0                                  0             
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       Multiplication of the above equality by – ė(u) ≠ 0 gives (64).  
 

3.2.6. Case n = 0, e(u) ≠ 0, e(u) – ė(u) = 0  => e(u) = ė(u) ≠ 0. 
 

The relation (57) can be written in the following form:  
(66)       0 = – eI0(e,ė = e,0) – I1(e,ė = e,0) .    

We directly compute that:   
                                                            2 π                                                                2 π           

(67)       I1(e,ė = e,0) = ∫cosφ(1 + ecosφ) – 2dφ = e – 1∫[(1 + ecosφ) – 1](1 + ecosφ) – 2dφ  =  
                                                             0                                                                    0        

                                   2 π                                                2 π            
                   =  – e – 1∫(1 + ecosφ) – 2dφ + e – 1∫(1 + ecosφ)dφ  =   
                                             0                                                  0                  

              = – e – 1I0(e,ė = e,0) + 2π e – 1(1 – e2) – 1/ 2 ,  
where we have used formula 858.525 from [14]. But according to formula 
858.535 from the same source [14]:  
                                                            2 π               

(68)       I0(e,ė = e,0) = ∫(1 + ecosφ) – 2dφ = 2π (1 – e2) – 3/ 2 = (1 – e2) – 1 2π (1 – e2) – 1/ 2 ,  
                                                             0         

which means that: 
(69)       2π (1 – e2) – 1/ 2  = (1 – e2)I0(e,ė = e,0) .  

Substituting this result into (67), we have that: 
(70)       I1(e,ė = e,0) = – e – 1I0(e,ė = e,0) + e – 1(1 – e2)I0(e,ė = e,0) =  – e I0(e,ė = e,0) .  

Hence, (66) is proved.  
 

3.2.7. Case n = 0, e(u) ≠ 0, e(u) – ė(u) ≠ 0. 
 

The linear relation (57) can be written as: 
(71)       (e – ė)I2(e,ė,0) = – eI0(e,ė,0) – [1 + e(e – ė)]I1(e,ė,0) . 

Let us calculate at first, using as before, the explicit expressions for 
the integrals from paper [11] (formulas (3a) – (3c)). In the present paper we 
have written them as the expressions (48), (49) and (50) for I0(e,ė,0), 
I1(e,ė,0), and I2(e,ė,0), respectively. From (50) we obtain:  
(72)      (e – ė)I2(e,ė,0) = A(e,ė){(e – ė)(– 1 + e2 + eė)[1 – (e – ė)2] 1/ 2 + (e – ė)(1 – e2) 3/ 2}. 

Further we evaluate the right-hand side of (71):   
(73)      – e I0(e,ė,0) – [1 + e(e – ė)]I1(e,ė,0) = A(e,ė){– e2ė[1 – (e – ė)2] 1/ 2 +   
            + e2(e – ė)(1 – e2)[1 – (e – ė)2] 1/ 2 – e(e – ė)2(1 – e2) 3/ 2 – [1 + e(e – ė)](e – ė – e3) ×    
            × [1 – (e – ė)2] 1/ 2 + [1 + e(e – ė)](e – ė) (1 – e2) 3/ 2 } =  
               = A(e,ė){(– e + e3 + ė – eė2)[1 – (e – ė)2] 1/ 2 + (e – ė)(1 – e2) 3/ 2 } .  

But (e – ė)(– 1 + e2 + eė) = – e + e3 + ė – eė2 and hence:  
(74)       – e I0(e,ė,0) – [1 + e(e – ė)]I1(e,ė,0) =   

= A(e,ė){(e – ė)(– 1 + e2 + eė)[1 – (e – ė)2] 1/ 2 + (e – ė)(1 – e2) 3/ 2 }.   
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The right-hand sides of (72) and (74) coincide and this proves the 
relation (71). This also completes the validity of (57)in the general case of 
integer/noninteger powers n, zero/nonzero values of e(u) (for |e(u)| < 1) and 
zero/nonzero values of [e(u) – ė(u)] (for |e(u) – ė(u)| < 1).  
 

3.3. Elimination of the integral I1(e,ė,n) 
 

In the next derivation we shall use not only definitions (3), but also 
definition (1) and (2). According to the later and the identity cosφ2 + sinφ2 = 1, 
we have:  
                                                     2 π                

(75)       I0+(e,ė,n) = ∫(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 2) dφ  =   
                                                      0         

                        2 π            

           = ∫(cosφ2 + sinφ2)(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 2) dφ  =   
                         0                

                                              2 π          

           = (e – ė) – 1∫cosφ[1 + (e – ė)cosφ – 1](1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 2) dφ  –    
                                               0                     

                                              2 π      

           – (e – ė) – 1∫sinφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 2) d[1 + (e – ė)cosφ]  =   
                                              0                    

                                               2 π           

           =  (e – ė) – 1∫cosφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ  –    
                                                0                 

                                                  2 π       

             = – (e – ė) – 1∫cosφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 2) dφ  +  
                                                   0      

                                                                   2 π       

           + [(n + 1)(e – ė)] – 1∫sinφ(1 + ecosφ) n – 2 d{ [1 + (e – ė)cosφ] – (n + 1) }  =  
                                                                    0       

                                                                                              2 π      

           = (e – ė) – 1I1(e,ė,n) – (e – ė) – 2∫{[1 + (e – ė)cosφ] – 1}(1 + ecosφ) n – 2  ×  
                                                                                                0               

 

           × [1 + (e – ė)cosφ] – (n + 2) dφ = [(n + 1)(e – ė)] – 1{ sinφ(1 + ecosφ) n – 2  ×    
                                                                                    │2 π    2 π         

           × [1 + (e – ė)cosφ] – (n + 1) │  –  ∫[1 + (e – ė)cosφ] – (n + 1) d [sinφ(1 + ecosφ) n – 2] }  =   
                                                                                        │0        0      

                                                                                     2 π             

           = (e – ė) – 1I1(e,ė,n) – (e – ė) – 2∫(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ  +   
                                                                                               0      

                                     2 π           

           + (e – ė) – 2∫(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 2) dφ  –   
                                               0        
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                                                                  2 π       

           – [(n + 1)(e – ė)] – 1∫cosφ(1 + ecosφ) n – 2 [1 + (e – ė)cosφ] – (n + 1) dφ  +   
                                                                   0       

                                                                                    2 π        

          + (n – 2)e[(n + 1)(e – ė)] – 1∫(1 – cos2φ)(1 + ecosφ) n – 3[1 + (e – ė)cosφ] – (n + 1) dφ = 
                                                                                     0       

          = (e – ė) – 1I1(e,ė,n) – (e – ė) – 2I0(e,ė,n) + (e – ė) – 2I0+(e,ė,n) –   
                                                                                                                                                         2 π      

          – [(n + 1)(e – ė)] – 1I1(e,ė,n) + (n – 2)e[(n + 1)(e – ė)] – 1∫(1 + ecosφ) n – 3 ×  
                                                                                                                                                          0   

 

          × [1 + (e – ė)cosφ] – (n + 1) dφ  –   
                                                                                    2 π           

            – (n – 2)e[(n + 1)(e – ė)] – 1∫cos2φ(1 + ecosφ) n – 3 [1 + (e – ė)cosφ] – (n + 1) dφ .   
                                                                                     0   

The later integral in the right-hand side in the above equality can 
easily be computed:  
                        2 π           

(76)       ∫cos2φ(1 + ecosφ) n – 3 [1 + (e – ė)cosφ] – (n + 1) dφ  =  
                         0              

                                 2 π     

           = e – 1∫cosφ[(1 + ecosφ) – 1](1 + ecosφ) n – 3 [1 + (e – ė)cosφ] – (n + 1) dφ  =   
                                  0        

                                                                    2 π       

           = e – 1I1(e,ė,n) – e – 2∫[(1 + ecosφ) – 1](1 + ecosφ) n – 3 [1 + (e – ė)cosφ] – (n + 1) dφ  =   
                                                                     0        

             = e – 1I1(e,ė,n) – e – 2I0(e,ė,n) + e – 2I0-(e,ė,n) ,   
where we have taken into account the definition (1). Substituting (76) into 
(75), we arrive at the following linear dependence between the four integrals 
I0-(e,ė,n), I0+(e,ė,n), I0(e,ė,n) and I1(e,ė,n):    
(77)       0 = [(e – ė) – 2 – 1]I0+(e,ė,n) + (n – 2)[(n + 1)(e – ė)] – 1(e – e – 1)I0-(e,ė,n) +  
                + { (n – 2)[(n + 1)e(e – ė)] – 1 – (e – ė) – 2 }I0(e,ė,n) + { (e – ė) – 1 –   
                – [(n + 1)( e – ė)] – 1 – (n – 2)[(n + 1)( e – ė)] – 1 }I1(e,ė,n) .  

We choose to estimate from the above relation the integral I1(e,ė,n). 
After the multiplication of the both sides of (77) by (e – ė), the result is:  
(78)       2(n + 1) – 1I1(e,ė,n) = (n – 2)(1 – e2)[(n + 1)e] – 1I0-(e,ė,n) +  
                + [(e – ė)2 – 1]( e – ė) – 1I0+(e,ė,n) + { (e – ė) – 1 – (n – 2)[(n + 1)e] – 1 }I0(e,ė,n) .   

Another multiplication by (n + 1)e(e – ė) leads to the next 
evaluation:  
(79)       2e(e – ė) I1(e,ė,n) = (n – 2)(e – ė)( 1 – e2) I0-(e,ė,n) +  
                + (n + 1)e[(e – ė)2 – 1] I0+(e,ė,n) + [3e + (n – 2)ė] I0(e,ė,n) .  

We note that (79) is derived under the assumptions n ≠ – 1, e(u) ≠ 0 
(for |e(u)| < 1) and [e(u) – ė(u)] ≠ 0 (for |e(u) – ė(u)| < 1), which guarantees 
that the denominators into the expressions (75) – (78) will also be different 
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from zero. As in the previous cases, concerning the integrals I4(e,ė,n) and 
I2(e,ė,n), the derived equality (79) makes sense even if these limitations are 
not fulfilled for a certain value u ≡ ln p. We now shall check this statement.    
 

3.3.1. Case n ≠ – 1, e(u) = 0, e(u) – ė(u) = 0  => e(u) = ė(u) = 0. 
 

The equality (79) is obviously true, because the both sides are equal 
to zero.  
 

3.3.2.1. Case n = 2, e(u) = 0, e(u) – ė(u) ≠ 0  => ė(u) ≠ 0. 
 

Again (79) has both sides equal to zero.   
 

3.3.2.2. Case n ≠ – 1, n ≠ 2, e(u) = 0, e(u) – ė(u) ≠ 0  => ė(u) ≠ 0. 
 

The relation (79) in this case can be written as:  
(80)       0 = – (n – 2)ėI0-(0,ė,n) + (n – 2)ėI0(0,ė,n) .  

Because (n – 2)ė ≠ 0, we may divide by this quantity, to obtain:  
(81)       I0-(0,ė,n) – I0(0,ė,n) = 0 .  

Using definitions (1) and (3), direct computation shows that:  
                                                    2 π           

(82)       I0-(0,ė,n) = ∫(1 – ėcosφ) – (n + 1) dφ = I0(0,ė,n) .  
                                                     0      

Hence, equality (81) is trivially proved and the same is true for (79).  
 

3.3.3. Case n ≠ – 1, e(u) ≠ 0, e(u) – ė(u) = 0,  => ė(u) = e(u) ≠ 0. 
 

The linear relation (79) can be written in the following way:  
(83)       0 = – (n + 1)eI0+(e,ė = e,n) + (n + 1)ėI0(e,ė = e,n) .  
        Because ė(u) = e(u) ≠ 0 and (n + 1) ≠ 0,we can divide the both sides 
by (n + 1)e: 
(84)       I0(e,ė = e,n) – I0+(e,ė = e,n) = 0 .  

From definitions (2) and (3) we directly compute that: 
                                                            2 π                                                                  

(85)       I0(e,ė = e,n) = ∫(1 + ecosφ) n – 2 dφ = I0+(e,ė = e,n) .  
                                                             0      

That is, equality (84) and, hence, the linear relation (79) are also true in that 
case.   
 

3.3.4. Case n = – 1, e(u) = 0, e(u) – ė(u) = 0  => ė(u) = 0. 
 

The equality (79) now becomes 0 = 0 and it is trivially fulfilled.  
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3.3.5. Case n = – 1, e(u) = 0, e(u) – ė(u) ≠ 0  => ė(u) ≠ 0. 
 

The relation (79) now becomes:  
(86)       0 = 3ėI0-(0,ė,–1) – 3ėI0(0,ė,– 1) ,  or   I0-(0,ė,–1) = I0(0,ė,–1) .  
                                                         2 π                                                           2 π          

We have I0(0,ė,–1) = ∫dφ = 2π and I0-(0,ė,–1) = ∫dφ = 2π . Therefore, (86) and  
                                                          0                                                              0         

correspondingly (79) are satisfied. 
 

3.3.6. Case n = – 1, e(u) ≠ 0, e(u) – ė(u) = 0  => ė(u) = e(u) ≠ 0. 
 

In this particular case, the both sides of the equality (79) are equal to 
zero. 

  
3.3.7. Case n = – 1, e(u) ≠ 0, e(u) – ė(u) ≠ 0. 

 

The relation (79) now can be written as:  
 

(87)       2e(e – ė)I1(e,ė,– 1) = – 3(e – ė)(1 – e2)I0-(e,ė,–1) + 3(e – ė)I0(e,ė,–1) .   
 

Because (e – ė) ≠ 0, we may divide (87) by (e – ė) and check the 
validity of the equality:  

  
(88) 2eI1(e,ė,– 1) = – 3(1 – e2)I0-(e,ė,–1) + 3I0(e,ė,–1) .   

 

In an earlier paper [11], we have already computed for n = – 1 in an 
explicit form the following analytical expressions for the integrals I0(e,ė,–
1), I1(e,ė,–1) and I0-(e,ė,–1) (see in [11] formulas (2a), (2b) and (2h), 
respectively):  

 

(89)       I0(e,ė,–1) = π (2 + e2)(1 – e2) – 5/ 2 ,   
(90)       I1(e,ė,–1) = – 3π e(1 – e2) – 5/ 2 ,   
(91)       I0-(e,ė,–1) = π (2 + 3e2)(1 – e2) – 7/ 2 .   

 

Consequently:  
(92)       2eI1(e,ė,–1) = – 6π e2(1 – e2)(1 – e2) – 7/ 2 ,  
(93)       – 3(1 – e2)I0-(e,ė,–1) + 3I0(e,ė,–1) = – 3π (2 + 3e2)(1 – e2 )(1 – e2) – 7/ 2  +   
                 + 3π (2 + e2)(1 – e2 )(1 – e2) – 7/ 2 = – 6π e2(1 – e2 )(1 – e2) – 7/ 2 .   

 

The right-hand sides of (92) and (93) are equal, and, hence, the 
linear relation (87) is proved. Thus, the reliability of the linear relation (79) 
is shown to remain valid in the general case of integer/noninteger powers n, 
e(u) equal or not equal to zero (for |e(u)| < 1) and [e(u) – ė(u)] equal or not 
equal to zero (for |e(u) – ė(u)| < 1) for arbitrary values of u ≡ ln p. These 
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conditions may be separately or simultaneously encountered, and the 
equality (79) may be used without specifying any restrictions, like the above 
considered.  
 

4. Conclusions 
 

In a series of papers ([10] – [13]), we have investigated the dynamical 
equation (4), governing the structure of the stationary elliptical discs in the 
model developed by Lyubarskij et al. [4]. Our main goal is to reveal the 
properties of this second order ordinary differential equation in a fully (as 
far as possible) analytical manner, without introducing any additional 
simplifications into the model, except these which already exist in the 
original development [4]. The first successful step in this direction was the 
establishment that the dynamical equation is (in the most general case) a 
homogeneous differential equation [12]. The next step in the simplification 
of the equation was to eliminate four among the seven integrals, entering as 
functions of e(u), ė(u) and n into equation (4). In the present paper we 
pointed out how to do so with three of them, namely: I4(e,ė,n), I2(e,ė,n) and 
I1(e,ė,n). The elimination of the fourth integral I0(e,ė,n) will be considered 
in a forthcoming paper. As a final result, they may be represented, by 
means of linear relations, through two integrals, namely: I0-(e,ė,n) and 
I0+(e,ė,n). The later two integrals may be shown to be linearly independent 
functions on e(u) and ė(u) for every fixed (physically reasonable) value of 
the power n in the viscosity law η = β Σ n. This statement will also be proved 
in a forthcoming paper. The problem with the integral I3(e,ė,n) still 
remains unresolved. It is unclear are the three integrals (considered 
together) I0-(e,ė,n), I0+(e,ė,n) and I3(e,ė,n) linearly independent, or, 
opposite, the later integral can also be expressed as a linear combination of 
I0-(e,ė,n) and I0+(e,ė,n). This matter relates to the main aim of our 
investigations. Namely, to express the dynamical equation (4) as a sum of 
several terms, each factorized as a product of one of these two (or, may be, 
three) linearly independent integrals and coefficients, which are functions 
on e(u), ė(u) and n. The linear independence would imply nullification of 
the coefficients. This leads to splitting of the equation (4) into a system of 
probably more simple differential equations about the unknown function 
e(u).    
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ТЪНКИ ВИСКОЗНИ ЕЛИПТИЧНИ АКРЕЦИОННИ ДИСКОВЕ  
С ОРБИТИ, ИМАЩИ ОБЩА ДЪЛЖИНА НА ПЕРИАСТРОНА. 

V. ЛИНЕЙНИ ЗАВИСИМОСТИ МЕЖДУ УСРЕДНЕНИТЕ  
ПО АЗИМУТАЛНИЯ ЪГЪЛ МНОЖИТЕЛИ  

В ДИНАМИЧНОТО УРАВНЕНИЕ 
 

Д. Димитров 
 

Резюме 
Ние разглеждаме модел на стационарни елиптични 

акреционни дискове, разработен от Любарски и др. [4], които са 
получили обикновено диференциално уравнение от втори ред, 
описващо пространствената структура на тези обекти. Това динамично 
уравнение съдържа седем интеграли, възникващи при азимуталното 
усредняване по протежение на елиптичните орбити на части- 
ците от диска. Те са функции на неизвестното разпределение на 
ексцентрицитета e(u), неговата  производна ė(u) ≡ de(u)/du и степенния 
показател n в закона за вискозитета  η = β Σ n, където u ≡ ln p, p е 
фокалният параметър на конкретната елиптична орбита на частица- 
та. В настоящата статия, ние извеждаме линейни зависмости между 
тези неизвестни интеграли, които могат да бъдат полезни за 
елиминирането на три от тези величини. Възможно е да бъде 
елимиран допълнително още един интеграл, но доказването на това 
твърдение ще бъде отложено в една предстояща статия. Разгледаният 
подход е поддържан с цел да се разцепи динамичното уравнение на 
една система от по-прости диференциални уравнения.   


